Plurality and Events: Unbounded Representations across Categories

E. Matthew Husband

A variety of interpretational differences between sentences has been handled in linguistic theory by appealing to a unified opposition of homogeneity/quantization across traditional category boundaries. In nominals, the count/mass distinction has been attributed to homogeneous representations: mass nouns are homogeneous whereas count nouns are quantized. Homogeneity also plays a role in events for the interpretation of telicity. Durative (atelic) events are homogeneous whereas terminative (telic) events are quantized. It is also well known that these two categories interact in aspectual composition leading to telicity alternations of an event due to the count or mass interpretation of its nominal. Thus interpretational differences find a unified explanation that both describes the interpretations given within these categories and explains their compositional interaction.

Given this unified account, a basic question to be explored is the kind of processing differences we should expect to arise from homogeneous representations as compared to their quantized counterparts. Of particular interest is a linking between representational complexity and the directionality of processing costs. Given that quantized representations require extra steps adding a count or providing termination to the representation, we may suspect that quantized representations are more complex than homogeneous ones, and thus should be more costly to process. On the other hand, homogeneous representations require the set up of an unbounded set, a complex operation. We may suspect then that homogeneous representations are more complex than quantized ones, and thus should be more costly to process.

In several studies, the processing of homogeneous representations is explored in both nominals and events. This work links a particular processing theory to the linguistic representations thought to underlie the interpretational process, finding that processing homogeneous representations is more costly than quantized representations.